티스토리 뷰

0. 들어가기전에

  • 부스팅 알고리즘? 여러개의 약한 학습기(weak learner)를 순차적으로 학습-예측하면서 잘못 예측한 데이터에 가중치 부여를 통해 오류를 개선해 나가면서 학습하는 방식
  • 부스팅 대표 알고리즘? AdaBoost(Adaptive boosting) & 그래디언트 부스트

 

 

0.1 AdaBoost

  • 오류 데이터에 가중치를 부여하면서 부스팅을 수행하는 대표적인 알고리즘
  • 개별 약한 학습기 -> 가중치 부여 결합

 

 

 

1. Gradient Boosting Machine

<출처 > kdnuggets 

  • 가중치 업데이트를 경사하강법(Gradient Descent)를 이용하는 것이 큰 차이
  • 분류의 실제 결과값 y, 피처를 x1,x2... 피처에 기반한 예측 함수 F(x)  ===> 오류식? h(x) = y - F(x)
  • 경사하강법(Gradient Descent)?  h(x) = y - F(x) 를 최소화하는 방향성을 가지고 반복적으로 가중치 값을 업데이트
  • In the late 90’s, Breiman observed that a model that exhibits a certain level of error can serve as a base learner that can be improved by iteratively adding models that compensate for the error – a process called “boosting.

 

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from sklearn.ensemble import GradientBoostingClassifier
import time
import warnings
warnings.filterwarnings('ignore')
import pandas as pd
from sklearn.metrics import accuracy_score
 
 
def get_human_dataset():
    feature_name_df = pd.read_csv("./UCI HAR Dataset\\UCI HAR Dataset\\features.txt", sep = '\s+', header = None, names = ['column_index''column_name'])
    print(feature_name_df.head(3))
    feature_name = feature_name_df.iloc[:,1].values.tolist()
    new_list = ['tBodyAcc-mean()-X''tBodyAcc-mean()-Y''tBodyAcc-mean()-Z''tBodyAcc-std()-X''tBodyAcc-std()-Y''tBodyAcc-std()-Z''tBodyAcc-mad()-X''tBodyAcc-mad()-Y''tBodyAcc-mad()-Z''tBodyAcc-max()-X''tBodyAcc-max()-Y''tBodyAcc-max()-Z''tBodyAcc-min()-X''tBodyAcc-min()-Y''tBodyAcc-min()-Z''tBodyAcc-sma()''tBodyAcc-energy()-X''tBodyAcc-energy()-Y''tBodyAcc-energy()-Z''tBodyAcc-iqr()-X''tBodyAcc-iqr()-Y''tBodyAcc-iqr()-Z''tBodyAcc-entropy()-X''tBodyAcc-entropy()-Y''tBodyAcc-entropy()-Z''tBodyAcc-arCoeff()-X,1''tBodyAcc-arCoeff()-X,2''tBodyAcc-arCoeff()-X,3''tBodyAcc-arCoeff()-X,4''tBodyAcc-arCoeff()-Y,1''tBodyAcc-arCoeff()-Y,2''tBodyAcc-arCoeff()-Y,3''tBodyAcc-arCoeff()-Y,4''tBodyAcc-arCoeff()-Z,1''tBodyAcc-arCoeff()-Z,2''tBodyAcc-arCoeff()-Z,3''tBodyAcc-arCoeff()-Z,4''tBodyAcc-correlation()-X,Y''tBodyAcc-correlation()-X,Z''tBodyAcc-correlation()-Y,Z''tGravityAcc-mean()-X''tGravityAcc-mean()-Y''tGravityAcc-mean()-Z''tGravityAcc-std()-X''tGravityAcc-std()-Y''tGravityAcc-std()-Z''tGravityAcc-mad()-X''tGravityAcc-mad()-Y''tGravityAcc-mad()-Z''tGravityAcc-max()-X''tGravityAcc-max()-Y''tGravityAcc-max()-Z''tGravityAcc-min()-X''tGravityAcc-min()-Y''tGravityAcc-min()-Z''tGravityAcc-sma()''tGravityAcc-energy()-X''tGravityAcc-energy()-Y''tGravityAcc-energy()-Z''tGravityAcc-iqr()-X''tGravityAcc-iqr()-Y''tGravityAcc-iqr()-Z''tGravityAcc-entropy()-X''tGravityAcc-entropy()-Y''tGravityAcc-entropy()-Z''tGravityAcc-arCoeff()-X,1''tGravityAcc-arCoeff()-X,2''tGravityAcc-arCoeff()-X,3''tGravityAcc-arCoeff()-X,4''tGravityAcc-arCoeff()-Y,1''tGravityAcc-arCoeff()-Y,2''tGravityAcc-arCoeff()-Y,3''tGravityAcc-arCoeff()-Y,4''tGravityAcc-arCoeff()-Z,1''tGravityAcc-arCoeff()-Z,2''tGravityAcc-arCoeff()-Z,3''tGravityAcc-arCoeff()-Z,4''tGravityAcc-correlation()-X,Y''tGravityAcc-correlation()-X,Z''tGravityAcc-correlation()-Y,Z''tBodyAccJerk-mean()-X''tBodyAccJerk-mean()-Y''tBodyAccJerk-mean()-Z''tBodyAccJerk-std()-X''tBodyAccJerk-std()-Y''tBodyAccJerk-std()-Z''tBodyAccJerk-mad()-X''tBodyAccJerk-mad()-Y''tBodyAccJerk-mad()-Z''tBodyAccJerk-max()-X''tBodyAccJerk-max()-Y''tBodyAccJerk-max()-Z''tBodyAccJerk-min()-X''tBodyAccJerk-min()-Y''tBodyAccJerk-min()-Z''tBodyAccJerk-sma()''tBodyAccJerk-energy()-X''tBodyAccJerk-energy()-Y''tBodyAccJerk-energy()-Z''tBodyAccJerk-iqr()-X''tBodyAccJerk-iqr()-Y''tBodyAccJerk-iqr()-Z''tBodyAccJerk-entropy()-X''tBodyAccJerk-entropy()-Y''tBodyAccJerk-entropy()-Z''tBodyAccJerk-arCoeff()-X,1''tBodyAccJerk-arCoeff()-X,2''tBodyAccJerk-arCoeff()-X,3''tBodyAccJerk-arCoeff()-X,4''tBodyAccJerk-arCoeff()-Y,1''tBodyAccJerk-arCoeff()-Y,2''tBodyAccJerk-arCoeff()-Y,3''tBodyAccJerk-arCoeff()-Y,4''tBodyAccJerk-arCoeff()-Z,1''tBodyAccJerk-arCoeff()-Z,2''tBodyAccJerk-arCoeff()-Z,3''tBodyAccJerk-arCoeff()-Z,4''tBodyAccJerk-correlation()-X,Y''tBodyAccJerk-correlation()-X,Z''tBodyAccJerk-correlation()-Y,Z''tBodyGyro-mean()-X''tBodyGyro-mean()-Y''tBodyGyro-mean()-Z''tBodyGyro-std()-X''tBodyGyro-std()-Y''tBodyGyro-std()-Z''tBodyGyro-mad()-X''tBodyGyro-mad()-Y''tBodyGyro-mad()-Z''tBodyGyro-max()-X''tBodyGyro-max()-Y''tBodyGyro-max()-Z''tBodyGyro-min()-X''tBodyGyro-min()-Y''tBodyGyro-min()-Z''tBodyGyro-sma()''tBodyGyro-energy()-X''tBodyGyro-energy()-Y''tBodyGyro-energy()-Z''tBodyGyro-iqr()-X''tBodyGyro-iqr()-Y''tBodyGyro-iqr()-Z''tBodyGyro-entropy()-X''tBodyGyro-entropy()-Y''tBodyGyro-entropy()-Z''tBodyGyro-arCoeff()-X,1''tBodyGyro-arCoeff()-X,2''tBodyGyro-arCoeff()-X,3''tBodyGyro-arCoeff()-X,4''tBodyGyro-arCoeff()-Y,1''tBodyGyro-arCoeff()-Y,2''tBodyGyro-arCoeff()-Y,3''tBodyGyro-arCoeff()-Y,4''tBodyGyro-arCoeff()-Z,1''tBodyGyro-arCoeff()-Z,2''tBodyGyro-arCoeff()-Z,3''tBodyGyro-arCoeff()-Z,4''tBodyGyro-correlation()-X,Y''tBodyGyro-correlation()-X,Z''tBodyGyro-correlation()-Y,Z''tBodyGyroJerk-mean()-X''tBodyGyroJerk-mean()-Y''tBodyGyroJerk-mean()-Z''tBodyGyroJerk-std()-X''tBodyGyroJerk-std()-Y''tBodyGyroJerk-std()-Z''tBodyGyroJerk-mad()-X''tBodyGyroJerk-mad()-Y''tBodyGyroJerk-mad()-Z''tBodyGyroJerk-max()-X''tBodyGyroJerk-max()-Y''tBodyGyroJerk-max()-Z''tBodyGyroJerk-min()-X''tBodyGyroJerk-min()-Y''tBodyGyroJerk-min()-Z''tBodyGyroJerk-sma()''tBodyGyroJerk-energy()-X''tBodyGyroJerk-energy()-Y''tBodyGyroJerk-energy()-Z''tBodyGyroJerk-iqr()-X''tBodyGyroJerk-iqr()-Y''tBodyGyroJerk-iqr()-Z''tBodyGyroJerk-entropy()-X''tBodyGyroJerk-entropy()-Y''tBodyGyroJerk-entropy()-Z''tBodyGyroJerk-arCoeff()-X,1''tBodyGyroJerk-arCoeff()-X,2''tBodyGyroJerk-arCoeff()-X,3''tBodyGyroJerk-arCoeff()-X,4''tBodyGyroJerk-arCoeff()-Y,1''tBodyGyroJerk-arCoeff()-Y,2''tBodyGyroJerk-arCoeff()-Y,3''tBodyGyroJerk-arCoeff()-Y,4''tBodyGyroJerk-arCoeff()-Z,1''tBodyGyroJerk-arCoeff()-Z,2''tBodyGyroJerk-arCoeff()-Z,3''tBodyGyroJerk-arCoeff()-Z,4''tBodyGyroJerk-correlation()-X,Y''tBodyGyroJerk-correlation()-X,Z''tBodyGyroJerk-correlation()-Y,Z''tBodyAccMag-mean()''tBodyAccMag-std()''tBodyAccMag-mad()''tBodyAccMag-max()''tBodyAccMag-min()''tBodyAccMag-sma()''tBodyAccMag-energy()''tBodyAccMag-iqr()''tBodyAccMag-entropy()''tBodyAccMag-arCoeff()1''tBodyAccMag-arCoeff()2''tBodyAccMag-arCoeff()3''tBodyAccMag-arCoeff()4''tGravityAccMag-mean()''tGravityAccMag-std()''tGravityAccMag-mad()''tGravityAccMag-max()''tGravityAccMag-min()''tGravityAccMag-sma()''tGravityAccMag-energy()''tGravityAccMag-iqr()''tGravityAccMag-entropy()''tGravityAccMag-arCoeff()1''tGravityAccMag-arCoeff()2''tGravityAccMag-arCoeff()3''tGravityAccMag-arCoeff()4''tBodyAccJerkMag-mean()''tBodyAccJerkMag-std()''tBodyAccJerkMag-mad()''tBodyAccJerkMag-max()''tBodyAccJerkMag-min()''tBodyAccJerkMag-sma()''tBodyAccJerkMag-energy()''tBodyAccJerkMag-iqr()''tBodyAccJerkMag-entropy()''tBodyAccJerkMag-arCoeff()1''tBodyAccJerkMag-arCoeff()2''tBodyAccJerkMag-arCoeff()3''tBodyAccJerkMag-arCoeff()4''tBodyGyroMag-mean()''tBodyGyroMag-std()''tBodyGyroMag-mad()''tBodyGyroMag-max()''tBodyGyroMag-min()''tBodyGyroMag-sma()''tBodyGyroMag-energy()''tBodyGyroMag-iqr()''tBodyGyroMag-entropy()''tBodyGyroMag-arCoeff()1''tBodyGyroMag-arCoeff()2''tBodyGyroMag-arCoeff()3''tBodyGyroMag-arCoeff()4''tBodyGyroJerkMag-mean()''tBodyGyroJerkMag-std()''tBodyGyroJerkMag-mad()''tBodyGyroJerkMag-max()''tBodyGyroJerkMag-min()''tBodyGyroJerkMag-sma()''tBodyGyroJerkMag-energy()''tBodyGyroJerkMag-iqr()''tBodyGyroJerkMag-entropy()''tBodyGyroJerkMag-arCoeff()1''tBodyGyroJerkMag-arCoeff()2''tBodyGyroJerkMag-arCoeff()3''tBodyGyroJerkMag-arCoeff()4''fBodyAcc-mean()-X''fBodyAcc-mean()-Y''fBodyAcc-mean()-Z''fBodyAcc-std()-X''fBodyAcc-std()-Y''fBodyAcc-std()-Z''fBodyAcc-mad()-X''fBodyAcc-mad()-Y''fBodyAcc-mad()-Z''fBodyAcc-max()-X''fBodyAcc-max()-Y''fBodyAcc-max()-Z''fBodyAcc-min()-X''fBodyAcc-min()-Y''fBodyAcc-min()-Z''fBodyAcc-sma()''fBodyAcc-energy()-X''fBodyAcc-energy()-Y''fBodyAcc-energy()-Z''fBodyAcc-iqr()-X''fBodyAcc-iqr()-Y''fBodyAcc-iqr()-Z''fBodyAcc-entropy()-X''fBodyAcc-entropy()-Y''fBodyAcc-entropy()-Z''fBodyAcc-maxInds-X''fBodyAcc-maxInds-Y''fBodyAcc-maxInds-Z''fBodyAcc-meanFreq()-X''fBodyAcc-meanFreq()-Y''fBodyAcc-meanFreq()-Z''fBodyAcc-skewness()-X''fBodyAcc-kurtosis()-X''fBodyAcc-skewness()-Y''fBodyAcc-kurtosis()-Y''fBodyAcc-skewness()-Z''fBodyAcc-kurtosis()-Z''fBodyAcc-bandsEnergy()-1,8''fBodyAcc-bandsEnergy()-9,16''fBodyAcc-bandsEnergy()-17,24''fBodyAcc-bandsEnergy()-25,32''fBodyAcc-bandsEnergy()-33,40''fBodyAcc-bandsEnergy()-41,48''fBodyAcc-bandsEnergy()-49,56''fBodyAcc-bandsEnergy()-57,64''fBodyAcc-bandsEnergy()-1,16''fBodyAcc-bandsEnergy()-17,32''fBodyAcc-bandsEnergy()-33,48''fBodyAcc-bandsEnergy()-49,64''fBodyAcc-bandsEnergy()-1,24''fBodyAcc-bandsEnergy()-25,48''fBodyAcc-bandsEnergy()-1,8''fBodyAcc-bandsEnergy()-9,16''fBodyAcc-bandsEnergy()-17,24''fBodyAcc-bandsEnergy()-25,32''fBodyAcc-bandsEnergy()-33,40''fBodyAcc-bandsEnergy()-41,48''fBodyAcc-bandsEnergy()-49,56''fBodyAcc-bandsEnergy()-57,64''fBodyAcc-bandsEnergy()-1,16''fBodyAcc-bandsEnergy()-17,32''fBodyAcc-bandsEnergy()-33,48''fBodyAcc-bandsEnergy()-49,64''fBodyAcc-bandsEnergy()-1,24''fBodyAcc-bandsEnergy()-25,48''fBodyAcc-bandsEnergy()-1,8''fBodyAcc-bandsEnergy()-9,16''fBodyAcc-bandsEnergy()-17,24''fBodyAcc-bandsEnergy()-25,32''fBodyAcc-bandsEnergy()-33,40''fBodyAcc-bandsEnergy()-41,48''fBodyAcc-bandsEnergy()-49,56''fBodyAcc-bandsEnergy()-57,64''fBodyAcc-bandsEnergy()-1,16''fBodyAcc-bandsEnergy()-17,32''fBodyAcc-bandsEnergy()-33,48''fBodyAcc-bandsEnergy()-49,64''fBodyAcc-bandsEnergy()-1,24''fBodyAcc-bandsEnergy()-25,48''fBodyAccJerk-mean()-X''fBodyAccJerk-mean()-Y''fBodyAccJerk-mean()-Z''fBodyAccJerk-std()-X''fBodyAccJerk-std()-Y''fBodyAccJerk-std()-Z''fBodyAccJerk-mad()-X''fBodyAccJerk-mad()-Y''fBodyAccJerk-mad()-Z''fBodyAccJerk-max()-X''fBodyAccJerk-max()-Y''fBodyAccJerk-max()-Z''fBodyAccJerk-min()-X''fBodyAccJerk-min()-Y''fBodyAccJerk-min()-Z''fBodyAccJerk-sma()''fBodyAccJerk-energy()-X''fBodyAccJerk-energy()-Y''fBodyAccJerk-energy()-Z''fBodyAccJerk-iqr()-X''fBodyAccJerk-iqr()-Y''fBodyAccJerk-iqr()-Z''fBodyAccJerk-entropy()-X''fBodyAccJerk-entropy()-Y''fBodyAccJerk-entropy()-Z''fBodyAccJerk-maxInds-X''fBodyAccJerk-maxInds-Y''fBodyAccJerk-maxInds-Z''fBodyAccJerk-meanFreq()-X''fBodyAccJerk-meanFreq()-Y''fBodyAccJerk-meanFreq()-Z''fBodyAccJerk-skewness()-X''fBodyAccJerk-kurtosis()-X''fBodyAccJerk-skewness()-Y''fBodyAccJerk-kurtosis()-Y''fBodyAccJerk-skewness()-Z''fBodyAccJerk-kurtosis()-Z''fBodyAccJerk-bandsEnergy()-1,8''fBodyAccJerk-bandsEnergy()-9,16''fBodyAccJerk-bandsEnergy()-17,24''fBodyAccJerk-bandsEnergy()-25,32''fBodyAccJerk-bandsEnergy()-33,40''fBodyAccJerk-bandsEnergy()-41,48''fBodyAccJerk-bandsEnergy()-49,56''fBodyAccJerk-bandsEnergy()-57,64''fBodyAccJerk-bandsEnergy()-1,16''fBodyAccJerk-bandsEnergy()-17,32''fBodyAccJerk-bandsEnergy()-33,48''fBodyAccJerk-bandsEnergy()-49,64''fBodyAccJerk-bandsEnergy()-1,24''fBodyAccJerk-bandsEnergy()-25,48''fBodyAccJerk-bandsEnergy()-1,8''fBodyAccJerk-bandsEnergy()-9,16''fBodyAccJerk-bandsEnergy()-17,24''fBodyAccJerk-bandsEnergy()-25,32''fBodyAccJerk-bandsEnergy()-33,40''fBodyAccJerk-bandsEnergy()-41,48''fBodyAccJerk-bandsEnergy()-49,56''fBodyAccJerk-bandsEnergy()-57,64''fBodyAccJerk-bandsEnergy()-1,16''fBodyAccJerk-bandsEnergy()-17,32''fBodyAccJerk-bandsEnergy()-33,48''fBodyAccJerk-bandsEnergy()-49,64''fBodyAccJerk-bandsEnergy()-1,24''fBodyAccJerk-bandsEnergy()-25,48''fBodyAccJerk-bandsEnergy()-1,8''fBodyAccJerk-bandsEnergy()-9,16''fBodyAccJerk-bandsEnergy()-17,24''fBodyAccJerk-bandsEnergy()-25,32''fBodyAccJerk-bandsEnergy()-33,40''fBodyAccJerk-bandsEnergy()-41,48''fBodyAccJerk-bandsEnergy()-49,56''fBodyAccJerk-bandsEnergy()-57,64''fBodyAccJerk-bandsEnergy()-1,16''fBodyAccJerk-bandsEnergy()-17,32''fBodyAccJerk-bandsEnergy()-33,48''fBodyAccJerk-bandsEnergy()-49,64''fBodyAccJerk-bandsEnergy()-1,24''fBodyAccJerk-bandsEnergy()-25,48''fBodyGyro-mean()-X''fBodyGyro-mean()-Y''fBodyGyro-mean()-Z''fBodyGyro-std()-X''fBodyGyro-std()-Y''fBodyGyro-std()-Z''fBodyGyro-mad()-X''fBodyGyro-mad()-Y''fBodyGyro-mad()-Z''fBodyGyro-max()-X''fBodyGyro-max()-Y''fBodyGyro-max()-Z''fBodyGyro-min()-X''fBodyGyro-min()-Y''fBodyGyro-min()-Z''fBodyGyro-sma()''fBodyGyro-energy()-X''fBodyGyro-energy()-Y''fBodyGyro-energy()-Z''fBodyGyro-iqr()-X''fBodyGyro-iqr()-Y''fBodyGyro-iqr()-Z''fBodyGyro-entropy()-X''fBodyGyro-entropy()-Y''fBodyGyro-entropy()-Z''fBodyGyro-maxInds-X''fBodyGyro-maxInds-Y''fBodyGyro-maxInds-Z''fBodyGyro-meanFreq()-X''fBodyGyro-meanFreq()-Y''fBodyGyro-meanFreq()-Z''fBodyGyro-skewness()-X''fBodyGyro-kurtosis()-X''fBodyGyro-skewness()-Y''fBodyGyro-kurtosis()-Y''fBodyGyro-skewness()-Z''fBodyGyro-kurtosis()-Z''fBodyGyro-bandsEnergy()-1,8''fBodyGyro-bandsEnergy()-9,16''fBodyGyro-bandsEnergy()-17,24''fBodyGyro-bandsEnergy()-25,32''fBodyGyro-bandsEnergy()-33,40''fBodyGyro-bandsEnergy()-41,48''fBodyGyro-bandsEnergy()-49,56''fBodyGyro-bandsEnergy()-57,64''fBodyGyro-bandsEnergy()-1,16''fBodyGyro-bandsEnergy()-17,32''fBodyGyro-bandsEnergy()-33,48''fBodyGyro-bandsEnergy()-49,64''fBodyGyro-bandsEnergy()-1,24''fBodyGyro-bandsEnergy()-25,48''fBodyGyro-bandsEnergy()-1,8''fBodyGyro-bandsEnergy()-9,16''fBodyGyro-bandsEnergy()-17,24''fBodyGyro-bandsEnergy()-25,32''fBodyGyro-bandsEnergy()-33,40''fBodyGyro-bandsEnergy()-41,48''fBodyGyro-bandsEnergy()-49,56''fBodyGyro-bandsEnergy()-57,64''fBodyGyro-bandsEnergy()-1,16''fBodyGyro-bandsEnergy()-17,32''fBodyGyro-bandsEnergy()-33,48''fBodyGyro-bandsEnergy()-49,64''fBodyGyro-bandsEnergy()-1,24''fBodyGyro-bandsEnergy()-25,48''fBodyGyro-bandsEnergy()-1,8''fBodyGyro-bandsEnergy()-9,16''fBodyGyro-bandsEnergy()-17,24''fBodyGyro-bandsEnergy()-25,32''fBodyGyro-bandsEnergy()-33,40''fBodyGyro-bandsEnergy()-41,48''fBodyGyro-bandsEnergy()-49,56''fBodyGyro-bandsEnergy()-57,64''fBodyGyro-bandsEnergy()-1,16''fBodyGyro-bandsEnergy()-17,32''fBodyGyro-bandsEnergy()-33,48''fBodyGyro-bandsEnergy()-49,64''fBodyGyro-bandsEnergy()-1,24''fBodyGyro-bandsEnergy()-25,48''fBodyAccMag-mean()''fBodyAccMag-std()''fBodyAccMag-mad()''fBodyAccMag-max()''fBodyAccMag-min()''fBodyAccMag-sma()''fBodyAccMag-energy()''fBodyAccMag-iqr()''fBodyAccMag-entropy()''fBodyAccMag-maxInds''fBodyAccMag-meanFreq()''fBodyAccMag-skewness()''fBodyAccMag-kurtosis()''fBodyBodyAccJerkMag-mean()''fBodyBodyAccJerkMag-std()''fBodyBodyAccJerkMag-mad()''fBodyBodyAccJerkMag-max()''fBodyBodyAccJerkMag-min()''fBodyBodyAccJerkMag-sma()''fBodyBodyAccJerkMag-energy()''fBodyBodyAccJerkMag-iqr()''fBodyBodyAccJerkMag-entropy()''fBodyBodyAccJerkMag-maxInds''fBodyBodyAccJerkMag-meanFreq()''fBodyBodyAccJerkMag-skewness()''fBodyBodyAccJerkMag-kurtosis()''fBodyBodyGyroMag-mean()''fBodyBodyGyroMag-std()''fBodyBodyGyroMag-mad()''fBodyBodyGyroMag-max()''fBodyBodyGyroMag-min()''fBodyBodyGyroMag-sma()''fBodyBodyGyroMag-energy()''fBodyBodyGyroMag-iqr()''fBodyBodyGyroMag-entropy()''fBodyBodyGyroMag-maxInds''fBodyBodyGyroMag-meanFreq()''fBodyBodyGyroMag-skewness()''fBodyBodyGyroMag-kurtosis()''fBodyBodyGyroJerkMag-mean()''fBodyBodyGyroJerkMag-std()''fBodyBodyGyroJerkMag-mad()''fBodyBodyGyroJerkMag-max()''fBodyBodyGyroJerkMag-min()''fBodyBodyGyroJerkMag-sma()''fBodyBodyGyroJerkMag-energy()''fBodyBodyGyroJerkMag-iqr()''fBodyBodyGyroJerkMag-entropy()''fBodyBodyGyroJerkMag-maxInds''fBodyBodyGyroJerkMag-meanFreq()''fBodyBodyGyroJerkMag-skewness()''fBodyBodyGyroJerkMag-kurtosis()''angle(tBodyAccMean,gravity)''angle(tBodyAccJerkMean),gravityMean)''angle(tBodyGyroMean,gravityMean)''angle(tBodyGyroJerkMean,gravityMean)''angle(X,gravityMean)''angle(Y,gravityMean)''angle(Z,gravityMean)']
    X_train = pd.read_csv("./UCI HAR Dataset\\UCI HAR Dataset\\train\\X_train.txt",sep = "\s+",names=new_list)
    #X_train = pd.read_csv("./UCI HAR Dataset\\UCI HAR Dataset\\train\\X_train.txt", sep = "\s+",  names = feature_name)
    X_test = pd.read_csv("./UCI HAR Dataset\\UCI HAR Dataset\\test\\X_test.txt", sep='\s+',  names=feature_name)
    y_train = pd.read_csv("./UCI HAR Dataset\\UCI HAR Dataset\\train\\y_train.txt", sep='\s+', header=None,
                          names=['action'])
    y_test = pd.read_csv("./UCI HAR Dataset\\UCI HAR Dataset\\test\\y_test.txt", sep='\s+', header=None,
                         names=['action'])
    return X_train,X_test,y_train,y_test
 
 
 
start_time = time.time()
 
X_train, X_test, y_train, y_test = get_human_dataset()
 
gb_clf = GradientBoostingClassifier(random_state = 0)
gb_clf.fit(X_train,y_train)
gb_pred = gb_clf.predict(X_test)
gb_accuracy = accuracy_score(y_test,gb_pred)
 
print("GBM 정확도 : {0:.4f}".format(gb_accuracy))
print("GBM 수행시간 : {0:.1f}초".format(time.time() - start_time))
cs

 

 

2. Gradient Boosting Machine 장단점

<장점> 

  • 랜덤포레스트보다는 예측 성능이 조금 뛰어나다

 

<단점>

  • 수행시간이 오래걸리고, 하이퍼 파라미터 튜닝 노력이 필요
  • 약한 학습기의 순차적인 예측 오류 보정을 통해 학습을 진행하기 때문에 멀티 CPU 코어 시스템을 사용하더라도 병렬 처리가 지원되지 않아서 대용량 데이터의 경우 학습에 매우 많은 시간이 필요

 

<출처> 

1. kdnuggets

 

Understanding Machine Learning Algorithms - KDnuggets

Machine learning algorithms aren’t difficult to grasp if you understand the basic concepts. Here, a SAS data scientist describes the foundations for some of today’s popular algorithms.

www.kdnuggets.com

2. 파이썬 머신러닝 완벽 가이드 , 권철민 저

댓글
공지사항
최근에 올라온 글
최근에 달린 댓글
Total
Today
Yesterday
링크
TAG more
«   2025/01   »
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31
글 보관함